

Func	amentals of Power Systems	PROBLEMS
QUEST	ION	
A pow transfo line, a are co in wye	er transmission system consists of a three-phase 15 kV g ormer, a 154 kV transmission line, a step-down transformer, load bus and an industrial plant. Three-phase stator windin nnected in wye. Step-up and step-down transformers are a -wye. The neutral points of all wye connections are solidly g	generator, a step-up a 10 kV distribution ngs of the generator Ilso both connected prounded.
a. b.	Draw a three-phase open circiut connection diagram of the above Draw a single line diagram of this system.	he system described

Fundamentals of Power System	S	PROBLEMS
DATA USED IN SINGLE-LINE DIAGRAMS		
Generator Data	Transmission Lines	
S_N : Nominal power U_N : Nominal line voltage	Line impedance or total impedance per km.	
%X : Reactance and resistance of the	Load	
Connection type of the windings	P _N active power U _N nominal line-to-li	ne voltage
Transformers	-	
S _N : Nominal 3-phase power		
U_{N1} ve U_{N2} : Nominal input/output voltage		
%X : Reactance and resistance of the win		
Connection type of the windings		
www.altas.org Electric Power Distri	bution Systems	Chapter 1 - 10

Fundam	entals of Power Systems		PROBLEMS	
ANSWER	 There are two different voltage circuits in this system. One of these voltage circuits should be selected as the operating circuit and the values in the other circuit should be transferred to this operating circuit. %u_{sc} and %u_R values are given in the figure as transformer data. 			
ASIDE %u _{SC} : Sho %u _R : The und	What are %u _{SC} and %u _R rt circuit voltage. voltage that causes Cooper losses er full load.	%u _s	%u _R %u _X	
%u _x : The loss	voltage that causes magnetizing es under full load.	$\% u_X = \sqrt{(\% u_{SC})^2}$	$-(\%u_R)^2$	
w.altas.org	Electric Power Distribution	on Systems	Chapter 1 - 16	

Fundamental	Fundamentals of Power Systems PROBLE			
ANSWER The c	The current values of the loads on LV side:			
Angles relating given for log Thus, the log expressed a	ted to power coefficients ads: pad currents can be as phasors.	$\phi_{1} = \cos^{-1}(0.80) = 3$ $\phi_{2} = \cos^{-1}(0.75) = 4$ $\underline{I}_{L1LV} = 1039.23 \underline{I}_{L2LV}$ $\underline{I}_{L2LV} = 2078.42 \underline{I}_{L2LV}$	$^{36^{0}}_{4^{0}}$ 5.86^{o} A 41.4^{o} A	
These are	These are the load currents at low voltage side of the transformer.			
These curr transferred in the 15 k transforme	se current values calculated for the 500 V low voltage circuit must be nsferred to 15 kV circuit so that they can be used together with the \underline{Z}_{THV} he 15 kV high voltage circuit. This transfer can be accomplished using the nsformer's turn ratio.			
www.altas.org	Electric Power Distribution	Systems	Chapter 1 - 22	

Fundament	als of Power Systems	PROBLEMS		
QUESTION				
In the system example, if the answer the foll	whose impedance diagram is obtained in the previ e voltage of the busbar B1 is kept constant at 15 k lowing.	ous /,		
a. What will b	a. What will be the voltage value of the B1 busbar?			
b. What is the	b. What is the power factor in the B1 and B2 busbars?			
NOTE : Take t	NOTE : Take the voltage of the B2 busbar as reference.			
HINT: Sir be	nce V_2 voltage is not known, I_1 and I_2 load cur written as dependent on V_2 voltage.	rents can		
www.altas.org	Electric Power Distribution Systems	Chapter 1 - 32		

Fundamer	tals of Power Systems PROBLEMS		
ANSWER	The impedance of the transmission line given in the question can be divided by Z_{B2} and converted to pu value. The impedance of the transmission line can be divided by Z_{B2} and converted to pu value.		
$Z_{\rm pu} = \frac{Z_{\rm ACTUAL}}{Z_{\rm B}} = \frac{(10+j45) \ \Omega}{1190 \ \Omega}$ $Z_{\rm pu} = (0.0084+j0.0378) \ {\rm pu} = (0.84+j3.78) \ \%$			
Generator and transformer impedances are already given as % of Their base values are the nominal values of the relevant unit. For example, the generator has an impedance of 18% with a base of MVA and 25 kV. These values must be transferred to the new ba			
	One way to perform this transfer is to first conver- Ohm values and then divide them by the new bas	t the pu values to e value.	
ww.altas.org	Electric Power Distribution Systems	Chapter 1 - 45	

Fundament	ndamentals of Power Systems PROBLEMS			
QUESTION	IONA large generator is connected to the grid via a transformer. This type of system is called a unit-linked system. The System data is given as:Generator: 450 MVA 25 kV X_{c} = 85%			
	Transfo	ormer: 500 MVA	25 kV /120 kV	X _{TR} = 13 %
 Generator and transformer reactances are given in % at their nominal values. These need to be converted to Ohm values. (a) Draw a single-line diagram of this system. (b) Draw the equivalent circuit of this system by showing the impedances in Ohms. (c) Draw the equivalent circuit of this system by showing the impedances with pu values at the base of 500 MVA 				
(d) If a three-phase symmetrical short circuit occurs on the high voltage side of the transformer, what will be the value of the current flowing through the generator windings?				
www.altas.org	Electric Power	Distribution System	S	Chapter 1 - 48

